厦门国科安芯科技有限公司

AS32X601 应用笔记

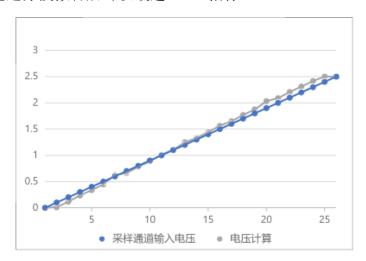
AN001

目录

	简介	. 3
	ADC	
	DAC	
	D CACHE 读写访问	
	管脚定义更新	Δ

一 简介

AS32X601 目前 V1.0 版本中 ADC、DAC、D CACHE 需要改进, V1.1 版本 改进后 ADC 、DAC 的性能会显著提高,同时解决 D CACHE 访问异常问题,本 文档对以上问题进行说明,同时对于改动前后管脚定义的变化进行说明。

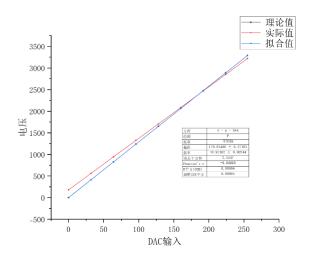

\perp ADC

ADC 目前版本有效位数和线性度较差,改进后版本 ADC 典型场景下有效位数可以到 10 位左右,线性度明显改善。

目前版本只开一个 ADC, 其他两个 ADC 关闭的静态转换性能如下图所示, 只开启一个 ADC (ADC1), 且其他 ADC 不开启测得的数据,可以看出:

- 0.1~0.4V,测试数据和实际值偏差范围在 10%~90%之间;
- 0.5~1.8V,测试数据和实际值偏差范围小于 5%左右。
- 1.9~2.4V, 测试数据和实际值偏差范围在 5%左右;

从趋势图也可以看出,中间段的数据质量稍微好一点,两头的数据偏差较大。 目前版本通过分段拟合后可以改进 ADC 指标。



改进后版本提供时间为 2025 年 11 月中旬左右。

\equiv DAC

DAC 目前版本有效位数较低,改进后版本 DAC 典型场景下有效位数明显改善。目前版本 DAC 性能如下:

采用对误差做线性式拟合,通过测试的结果加上误差的拟合值,即可得到最后测试的修正值。如图所示,分别是 3.3V 和 2.5V 电压范围的 DAC 静态转换图,拟合后的值和理论值几乎一致,所以 DAC 的误差是可以通过拟合基本可以修正误差。同时开两个 DAC,测试 DAC0 的静态转换性能拟合曲线。

改进后版本提供时间为2025年11月中旬左右。

四 D CACHE 读写访问

D CACHE 读写程序运行过程中会概率性出现访问异常,改进后版本会解决此问题。关于此问题在《AN002》中有详细描述和基于目前版本的解决方案。

改进后版本提供时间为2025年11月中旬左右。

五 管脚定义更新

本次版本更新对于5个管脚的定义有变化,具体如下:

(1) PB12 (PIN 编号 101)、PB13 (PIN 编号 110)、PB14 (PIN 编号 126)

去掉原有的模拟功能

101	PB12 (V1. 0)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: SPIO_CSO 功能 2: HTIMO_CH1 功能 3: NA 模拟功能: ADCO_VREFBI	默认功能描述: GPIO 功能描述 0: NA 功能描述 1: SPIO 片选信 号 0 功能描述 2: 高级定时器 0 通道 1 输入或输出 功能描述 3: NA 模拟功能描述: ADCO_VREFBI
101	PB12 (V1. 1)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: SPIO_CSO 功能 2: HTIMO_CH1 功能 3: NA 模拟功能: ADCO_VREFBI	默认功能描述: GPIO 功能描述 0: NA 功能描述 1: SPIO 片选信号 0 功能描述 2: 高级定时器 0 通道 1 输入或输出 功能描述 3: NA 模拟功能描述: NA
110	PB13 (V1. 0)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: SPIO_SCK 功能 2: HTIMO_CH2 功能 3: NA 模拟功能: ADC1_VREFBI	默认功能描述: GPIO 功能描述 0: NA 功能描述 1: SPIO 时钟信 号 功能描述 2: 高级定时器 0 通道 2 输入或输出 功能描述 3: NA 模拟功能描述: ADC1_VREFBI
110	PB13 (V1. 1)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: SPIO_SCK 功能 2: HTIMO_CH2 功能 3: NA 模拟功能: ADC1_VREFBI	默认功能描述: GPIO 功能描述 0: NA 功能描述 1: SPIO 时钟信 号 功能描述 2: 高级定时器 0 通道 2 输入或输出 功能描述 3: NA 模拟功能描述: NA

	PB14 (V1. 0)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: SPIO_MOSI 功能 2: HTIMO_CH3 功能 3: NA 模拟功能: ADC2_VREFBI	默认功能描述: GPI0 功能描述 0: NA 功能描述 1: SPI0 主机输 出从机输入信号 功能描述 2: 高级定时器 0 通道 3 输入或输出 功能描述 3: NA 模拟功能描述: ADC2_VREFBI
126	PB14 (V1. 1)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: SPIO_MOSI 功能 2: HTIMO_CH3 功能 3: NA 模拟功能: ADC2_VREFBI	默认功能描述: GPI0 功能描述 0: NA 功能描述 1: SPI0 主机输 出从机输入信号 功能描述 2: 高级定时器 0 通道 3 输入或输出 功能描述 3: NA 模拟功能描述: NA

(2)PA7(PIN 编号 121)原有的数字功能和模拟功能均去掉,新功能为 VREFN

121	PA7 (V1.0)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: HTIMO_CH2N 功能 2: USART7_RX	默认功能描述: GPIO 功能描述 0: NA 功能描述 1: 高级定时器 0 通道 2 互补输出 功能描述 2: USART7 数据 接收输入
				功能 3: NA 模拟功能: ADC1_IN8	功能描述 3: NA 模拟功能描述: ADC1 数 据输入 bit8
	PA7 (V1. 1)	VREFN	POWER		模拟 IP 的负参考电压

(3)PC3(PIN 编号 122)原有的数字功能和模拟功能均去掉,新功能为 VREFP

122	PC3 (V1. 0)	GPI0	IF	默认功能: GPIO 功能 0: NA 功能 1: HTIMO_CHO 功能 2: SPI2_CSO 功能 3: NA 模拟功能: ADC1_INO	默认功能描述: GPIO 功能描述 0: NA 功能描述 1: 高级定时器 0 通道 0 输入或输出 功能描述 2: SPI2 片选信 号 0 功能描述 3: NA 模拟功能描述: ADC1 数 据输入 bit0
	PC3 (V1. 1)	VREFP	POWER		模拟 IP 的正参考电压

客户可以基于目前版本进行项目前期评估验证,如果要做板卡,建议对以上 5个管脚做兼容设计,PB12(PIN 编号 101)、PB13(PIN 编号 110)、PB14(PIN 编号 126)三个管脚模拟功能不用,同时 PA7(PIN 编号 121)和 PC3(PIN 编号 122)两个管脚的数字功能和模拟功能均不用,VREF同时连接到PA7、PC3和 106、107管脚。新版本预计 2025年11月中旬左右可以提供,兼容设计后的板卡既可以贴装目前版本芯片也可以贴装新版本芯片。